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ACCEPTANCE CONTROL CHARTS WITH STIPULATE) ERROR

PROBABILITIES BASED ON POISSON COUNT DATA

by

Suresh 1Ihatre

Richard L. Scheaffer

S..Richard S. Leavenworth

ABSTRACT

An acceptance control charting scheme is investigated for the case in

which observations consist of the number of nonconformances seen when a

process is observed for a certain fixed length of time. The counts are

assumed to have a Poisson distribution. Two normal approximations for

finding the optimum sample size and control limit are compared to the exact

values found through the use of Poisson (or Chi-square) probabilities. Rec-

ommendations for practical usage are made as a result of a numerical study.
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ACCEPTANCE CONTROL CHARTS WITH STIPULATED ERROR

PROBABILITIES BASED ON POISSON COUNT DATA

by

Suresh Mhatre
Richard L. Scheaffer

Richard S. Leavenworth

INTRODUCTION

The application of control chart methods to accept and reject the

output of a process has been described in the literature on several oc-

casions. Winterhalter (1945) suggested the use of what he called reject

limits in conjunction with the usual control limits to control a process

average, X. So long as process dispersion was held in control and the

control limits lay within the reject limits, virtually all product would

meet specifications.

Hill (1956) expanded this Idea by employing the reject limits in place

of standard control limits for those cases in which the difference be-

tween the upper and lower specification limits (1U - L) substantially ex-

ceeded the natural tolerances of the process, 6 a'. In his 1957 article,

Richard Freund gave more form and substance to Winterhalter's earlier

work by providing an analytical basis for deriving the location of a reject

limit. He also coined the phrase Aj etance Control Chart and referred to

the derived limit as the Acceptance Control Limit (ACL). His development

closely follows that for variables acceptance sampling plans. Essen-

tially, it requires the specification of two points on an operating

characteristic curve in terms of a quality level and probability of

acceptance for each. From bhese inputs are derived a control limit,
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the ACL, and a subgroup size, n . So long as the plotted values of X

fall within the ACL's, the process may be assumed to be turning out

product that meets specifications, subject to the defined risks.

In this paper, we extend Freund's work to the attributes case of

counts of nonconformances or nonconformances per unit which can be shown

to follow the Poisson distribution. Traditionally, the c-chart has been

used when the area of opportunity for a nonconformity to occur is constant;

the u-chart has been used when the area of opportunity varies from sub-

group to subgroup. Three methods for finding the optimum subgroup size

and acceptance control limit are compared. These are: (1) the exact

method, employing the Poisson distribution; (2) the standard normal approx-

imation; and (3) the square-root normal transformation.

PROBLEM FORMULATION

Control charts for nonconformances have found many uses in industry.

Examples include counts of surface imperfections on film, flaws in fabric

weave and nonconformities in completed units and subassemblies. The par-

ticular application developed in this paper relates to maintenance activ-

ities. Frequently maintenance shops process similar types of units, such

as hydraulic assemblies, but the units vary substantially in size and

time required to process them. In such cases, it may be reasonable to

assume that the act of committing an error in processing (the ,ccurence

of a nonconformity) has a constant probability as a function of t-'e.

The area of opportunity for the occurrence of a nonconformity is thus

measured in units of time.

We assume that the quality control procedure consists of observing
a process for a length of time, H, and counting the number of noncon-

formancts, X, that occur during this time interval. We assume that X



has a Poisson distribution with intensity A. That is, the mean number

of nonconformances observed in time H is XH. Formulating the problem

requires the specification of two pairs of values:

(1) An Acceptablp Process Level, X., and its associated

risk level, a. X is the process quality level that is con-

sidered acceptable as a process average measured in terms of

nonconformances per 100 worker-hours. The probability of ac-

cepting the hypothesis that the process is operating at or be-

low A 0 when it actually is operating at o, is 1 -a.

(2) A Rejectable Process Level, A1, and its associated

risk level, a. XI is the process quality level that Is con-

sidered unacceptable. The risk of accepting the hypothesis

that the process is operating at or below X when it actually

is operating at or above AI is a.

The two points (Ao , I - a) and (X,,0 thus define the operating char-

acteristic curve of the acceptance control chart plan. From these two

points we will derive the Acceptance Control Limit, K, and the optimal

subgroup size, 11.

Generally speaking, the quality control procedure will involve looking

at a series of time intervals, l' 12 , . . . . . , and observing XI, X2 .1!2 -4 -

In this case, we assume X has a Poisson distribution with mean Hi . Hi

can be thought of as the size of the It h subgroup.

The intensity of nonconformances at the acceptable process level

(APL) will be deonted by XO, while the intensity at the rejectable pro-

cess level (RPL) will be denoted by A1. With K denoting the acceptance

control limit (ACL), we can make the identifications shown in Figure 1.

3



XRPL

K ACL

" 0H _ APL

0

Fig. 1 An Acceptance Control Charting Scheme for Poisson Counts

PROBLEM SOLUTION

Our problem is to determine values of I1 and K for fixed values of a,

X and X i" Recall that we want to choose H and K so that the probabil-

ity of X exceeding K, when A 0 is the true intensity, is a; and the proba-

bility of X being less than or equal to K, when XI is the true intensity, is 8.

We shall investigate three methods of calculating H and K, for fixed

X05 XIt a and 8. The first will use exact Poisson probabilities; the

other two will involve normal approximations to the Poisson. One might

ask why approximate procedures are needed when an exact solution is known.

The answer lies in the fact that the exact solution, for all possible in-

dustrial applications, requires entensive tables of Poisson (or Chi-square)

probabilities. Normal approximations have been used in industry and can

be worked out quickly and easily with reference to only a table of normal

curve areas.

14
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Exact Solution

We can find the exact solution for H and K based on Poisson prob-

abilities. If X has a Poisson distribution with mean 0, then

P X < C) =( 2
P(X2(C + 1) > 20)

2
where X denotes a Chi-square random variable with r degress of freedom.

r

Thus, a table of Chi-square probabilities can be used in place of Poisson

probabilities.

Now H and K are found by simultaneously solving the equations

P0(X < K) = P(X2 (K+) 2XH) =  -

and
2

P1 (X < K) = > 2A H) - L'

These cquations must be solved iteratively.

Standard Normal Approximation

If X has a Poisson distribution with mean XH, then it is well-known

t hat

X - Xll

has, approximately, a standard normal distribution if AU is large.

(That is, (X- A)//i has a distribution which tends to the standard

normal distribution as XH tends to infinity; the approximation seems

to work well for All greater than 5.)

If z denotes the value that cuts off an upper tail area of y
-Y

under the standard normal curve, then H and K can be found by solving

the equations

K-X H

z a= 0

and

K-X H
-z - -



Solving these equations yields

H [a. 0 a~

and

K X 0 H + z X 0H- A1H - z8 "XAIH

Square-Root Normal Transformation

Since X, suitably standardized, is approximately normally, dis-

tributed, it can be shown that rX also is approximately normally dis-

tributed The variance of /_X is essentially free of X, for large AH,

and the distribution of F tends to be more accurately approximated

by a normal distribution than does the distribution of X, for moder-

ate values of X1.

The theory (see Johnson and Kotz [1969]) actually states the

2(/VX - /TXi)

is approximately distributed as a standard normal random variable if

Xl_ is large. Working on the true square-root scale, we find H and

V7 by solving the equations

z = 2 ( r--- 'X 0 H

and

- = 2(/T - H

which yield

2

and

= /-X + 1/2 z

0a

b



Transforming back to the original count scale

K - (,XfOH + 1/2 z )2
0 c

The equation for H is the same as the one in the standard normal case

when a =

NUMERICAL STUDY

The values of H and K were found for various fixed values of

X0, Xi' a and 0. A representative sample illustrative of our findings is

shown in Table 1. The complete set of results is contained in the Appendix.

To illustrate these results, we will look at the first row of figures

where a = 0.025, a = 0.01, X0 = 0.1, and Xi = 0.6. We say that the

process is out of control if there are more than K nonconformances

in H time units of observation. K has the value of 5 for both the

standard normal approximation and the exact case and the value 6 for

the square-root normal case. Note that the standard normal approxima-

tion gives a value of H, 23.469 time units, much larger than the true

value, 22.000. Thus we would be observing the process longer than

we should, for the same K value, and, as a result, have a greater

probability of seeing more than K nonconformities than the nominal value

of a indicates.

The square-root transformation results in an H approximately equal

to the true value, but the K is slightly larger. Thus the probability

of seeing more than K nonconformities would be slightly smaller than the

nominal value. This pattern prevails throughout most of the cases studied.
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TABLE 1

Values of H and K for Specified
A0 f xis a and B.

- 0.025 a 0.01

STANDARD SQUARE ROOT EXACT
NORMAL NORMAL (CHI-SQUARE)

A0 x H K H K H K

0.1 0.6 23.469 5 21.858 6 22.000 5

0.2 0.7 31.887 11 30.280 12 31.000 11

0.3 0.8 39.813 18 38.222 19 38.250 18

0.4 0.9 47.534 27 45.950 28 46.500 27

1.0 4.0 4.860 9 4.595 10 4.795 9

2.0 5.0 7.067 21 6.803 22 6.900 21

3.0 6.0 9.191 37 8.927 38 8.967 37

4.0 7.0 11.283 58 11.019 58 11.172 58

- 0.05 a = 0.01

0.1 0.6 21.578 4 18.773 5 19.700 4

0.2 0.7 28.783 9 26.005 10 27.250 9

0.3 0.8 35.575 16 32.812 16 33.500 15

0.4 0.9 42.195 23 39.442 23 39.556 22

1.0 4.0 4.408 7 3.944 8 4.000 7

2.0 5.0 6.299 18 5.839 18 5.860 17

3.0 6.0 8.131 32 7.663 32 7.767 31

4.0 7.0 9.915 50 9.459 49 9.536 48

8



TABLE 1, CONT. VALUES OF H AND K
FOR SPECIFIED X0, X1, a atnd 0.

a 0.05 8 0.025

STANDARD SQUARE ROOT EXACT
NORMAL NORMAL (CHI-SQUARE)

x0X H K H K H K

0.1 0.6 16.626 3 15.469 4 14.583, 3

0.2 0.7 22.580 8 21.429 8 20.570 7

0.3 0.8 28.186 13 27.038 13 28.167 13

0.4 0.9 33.647 19 32.501 20 33.000 19

1.0 4.0 3.442 6 3.250 7 3.285 6

2.0 5.0 5.003 15 4.812 15 4.700 14

3.0 6.0 6.505 26 6.314 27 6.350 26

4.0 7.0 7.985 41 7.794 41 7.988 40

~4I 9



EXAMPLE APPLICATIONS

Example 1. Check of Repaired Items Against a Standard. The data of

Table 2 shows the number of maintenance errors, X , observed upon

sampling repaired aircraft parts for which the actual repair time was

hours. In this example, Hi is fixed by the practical sampling

circumstances, and so no specific X1 needs to be determined. It is

desired that X0 be 0.01 and a be 0.01. Thus z is 2.33.

TABLE 2 NONCONFORMANCES AMONG REPAIRED ITEMS

STANDARD NORMAL SQUARE ROOT NORMAL
SAMPLE X H K K

k_ i i _ _ _ _

1 1 58.33 2.36 3.72

2 4 80.22 2.89 4.24

3 1 209.24 5.46 6.82

4 2 164.70 4.64 5.99

Table 2 also shows the values of K obtained by the standard normal

approximation and the square-root normal transformation. For the first

sample:

Standard normal approximation

K X 1 + z I
0 a 0

0.01(58.33) + 2.33 v'0.01(58.33)

2.36

Square-root normal transformation

K (/XolI + 1/2 z2
0 a

= 0.01(58.33) + 2.33/2)2

3.72
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Samples 1, 3 and 4 would be declared "In control" at the standard

value of AO under either scheme. However, sample 2, with X2 = 4, would

be declared "out-of-control" under the standard normal scheme and "in

control" if the square-root normal transformation were used; the observed

value is very close to the boundary in either case. Whether we declare

the process to be "out-of-control" or "in control" at the point that

sample 2 was taken depends upon whether we want to think of the true a

' 1 risk value as being slightly larger than 0.01 or slightly smaller than

0.01. In many cases declaring a process to be out-of-control when, in

fact, it is in control is a costly error. Thus a quality control

engineer may wish to use the more conservative procedure that lends

itself to smaller a value.

Example 2. Establishing a Standard Plan to Check Maintenance Errors

in a Paint Shop. It is desired to set up a standard Acceptance Control

Chart plan for checking maintenance errors in an aircraft subassembly

paint shop. The acceptable process level is 3 errors per 100 worker-

hours with a risk level (a) of 0.05. The rejectable process level is

to be 15 errors per 100 worker-hours with a risk level of 0.10. Values

of K and H will be found by the three methods.

As previously stated, the Chi-square may be used to solve for

Poisson probabilities. Using the Hald Statistical Tables (1952);

P(X (K+I) < 2X0H) = a

2
P(X2(K+I) 2X H) = 1 - a

Substituting the values of X0, A1, a, and 1 into these equations

4 P(X (K+I) < 2(0.03)H) = 0.05

1) (X_(~ i ! (0.15)11) =0.90
2(K+l)- 1

~I



A convenient search procedure for solving these equations for K and H

is to take the ratios of the values of X
2  for even values of r and-r

solve for the value of r that is closest to this ratio. The value of

H may then be found from the resulting values of X taken from the
__ r

table.

2X H

2X H X I/0 = 0.15/0.03 = 5.0
0

From the Hald Tables of the Chi-square distribution:

r X2(r, 0.90)/X 2 (r, 0.05)

6 10.6 /1.64 - 6.46

813.4 /2.73 = 4.91

10 16.0 /3.94 = 4.06

Clearly, the ratio of the two Chi-squares is closest to the desired

value of 5.0 when r equals 8. The value of K then must be

K = (8/2) -1 = 3

H is found by solving the equation

2XH = X 
2

r. "

for each (X, y) pair and selecting the larger (more conservative value. Thus

H= 2

H =X 28, .90 2X 1 = 13.4 /2(0.15) = 44.61/

or

It 8 =.5 / 2XO = 2.73 /2(0.03) = 45.50

Thus our observation time should be 45.50 hours.

In comparison, using the standard normal approximation yields values

of 11 and K of

1.645 .645 .03 + 1.2820- 12
j0,15 - 0.03= 42.41

L

K= 0.03(42.41) + 1.645/0.03(42.41) = 3.13

12



By the square-root normal transformation, these values are

H = 0.25(1.645 + 1.282)2 = 46.73
(V0.15 - 2

K = (V0.03(46.73) + 1.645/2)2 = 4.03

It should be noted that the actual values of a and 8 in this case

are 0.040 and 0.122 using the standard normal approximation and 0.014

and 0.172 using the square-root transformation. Thus both approximations

are more conservative with respect to a error and less conservative with

respect to 8 error than the plan design called for (a = 0.05 and 8 = 0.10).

As with many cases involving observations on maintenance operations

the actual total maintenance time involved in a sample subgroup is likely

to differ from the planned, or design, time. Table 3 shows the actual

subgroup times and nonconformities found in 21 subgroups. The actual

times range from a low of 32.1 hours to a high of 57.8. This results

from the fairly wide discrete time variation required to process a unit.

As a consequence, it may be necessary to recompute the control limit

based upon the actual time in a subgroup as opposed to the value found

for the design time. Since the count of nonconformities is integer-

valued, recalculation of the control limit is not always required.

Figure 2 shows the Acceptance Control Chart, using three sets of

control limits, for the sampling data of Table 3. Since the actual

sample hours vary from subgroup to subgr ,ip, it is inappropriate to

plot a central line on this chart. (Where the sample hours can be held

constant, a central line would be plotted at A H.) The control limit

using the exact Poisson is plotted as a dash line at the value 3.5 for

all points except subgroups 7, 9, 12, and 21. Recalculation was necessary

13
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for subgroups 7 and 12 (4.5) because of the larger than standard sample

hours and for subgroups 9 and 21 because of the smaller than standard

sample hours.

ACL by exact Poisson

..........ACL std. normal approximation

6 ACL square-root normal transformation

05
r-- - r-

w 4
4 , ... i_

0 -s--i-- n-r - ---- ~-
2

1 2 3 4 5 6 7 910 11 12 13 14 15 16 17 18 19 20 21

Subgroup Number

Fig. 2 Acceptance Control Chart for Data of Table 3

Table 3 also shows the values of K calculated from the standard

normal approximation and from the square-root normal transformation.

Again, since the count of nonconformities, C, is Integer-valued, the

ACl. for each approximation has been set hal f-way between Integerized

values of K and K+I . Where these ACL values differ from those found

by the exact Poisson, they are plotted on Figure 2 as dotted lines for

the standard normal approximation and as solid lines for the square-root

normal transformation.

observing Figure 2, it should be noted that an out-of-control

condition is signalled for subgroup 1 by both the exact Poisson and

the standard normal approximation but not by the square-root normal

transformation. In those' instances wherein the ACL by the standard

normal approximation differs from the exact Poisson, it tends to be

IS



tighter. Thus the standard normal approximation tends to protect more

against $ error at the sacrifice of a error. The square-root normal

transformation tends to act just the opposite. Where it differs from

the exact Poisson it tends to be looser affording greater protection

against a error at the expense of 8 error.

This feature is born out by examination of Table 3 in which are

tabulated the actual a and a error for each subgroup using each approxi-

mation method. Recall that the design level for a was 0.05. By the

standard normal approximation, actual a protection ranged from 0.035

to 0.115 with 18 of 21 case above 0.05. In the case of the square-root

normal transformation, actual a error ranged from 0.015 to 0.039; all

cases were below the design level of 0.05.

The design level for 8 was 0.10. In the case of the standard normal

approximation, the actual a error ranged from 0.027 to 0.146 with 5 of

21 cases above 0.10. For the square-root transformation all but threei .

cases were above the design level with the actual values ranging from

0.067 to 0.292. In four cases the actual risk levels were more than

double the design level.

It should be noted that where the ACL found by an approximation

method agrees with that found by the exact Poisson, the true values of

a and 8 apply to the exact Poisson as well. Thus when actual sample

hours differ from the value of It found from applying the Chi-square

formulas, the actual levels of protection may change significantly.

CONCLUSIONS

This paper has described an Acceptance Control Charting approach

for process control of cases involving the observation of Poisson counts.

In addition to deliniating a procedure utilizing the exact Poisson,

H_ 16
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procedures for use of the popular standard normal approximation and

of the not-so-frequently used square-root normal transformation were

developed and evaluated.

It was shown that the standard normal approximation tended to

favor protection against a error. To the extent that the results of

ACL calculations differed from the exact Poisson, the difference was

biased in favor of $ error protection. On the other hand, usage of

the square-root normal transformation leads to ACL calculations offering

better protection against a error. To the extent that these calculations

differed from the exact Poisson, the bias favored a error protection.

Study of a number of cases, of which Table 1 includes a sample,

indicated that the square-root normal transformation gives values of

I'i and K that oscillate around the true value- but that large discrepancies

between the approximate and true values are rare. We therefore recommend

using .e square-root transformation when it is cumbersome or impossible

to use exact values and when the cost of ot error is high in relation to

etrror. However, for those cases in which the cost of 6 error is equal

to or greater than that of a #_rror, the standard normal approximation

is preferable.
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APPENDIX

= 0.025 0.01

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE

xO Xl H K H K H K

0.1 0.3 89.71 14 85.74 15 84.83 14

0.2 0.4 137.86 37 133.91 38 134.80 37

0.3 0.5 184.83 70 180.88 70 181.14 69

0.4 0.6 231.37 111 227.43 111 227.71 110

0.5 0.7 277.71 161 273.77 161 273.72 160

0.6 0.8 323.94 221 320.00 220 319.48 219

0.7 0.9 370.09 290 366.16 289 366.29 288

0.8 1.0 416.20 368 412.27 366 411.59 365

0.9 1.1 462.28 456 458.35 453 457.81 452

1 1.0 1.2 508.34 552 504.41 549 503.83 548

0.025 = 0.01

STANDARD SQUARE-ROOr ACtUAL
NOR A. NORMAL CI-SQUARE

H K H K II K

0.1 0.6 23.469 5 21.870 6 22.000 5

0.2 0.7 31.887 11 30.296 12 31.000 11

0.3 0.8 39.813 18 38.226 19 38.250 18

0.4 0.9 47.534 27 45.950 28 46.500 27

0.5 1.0 55.145 37 53.563 38 53.800 37

0.6 1.1 62.691 49 61.110 49 61.833 49

0.7 1.2 70.192 62 68.613 63 70.087 01

0.8 1.3 77.665 77 76.086 77 7o.785 77

o.9 1.4 85.115 93 83.537 93 84.V';8 93

1.0 1.5 92.549 I1 1 90.971 Ill ! 1 111

_it9
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= 0.025 = 0.01

STANDARD SQUARE-ROOT ACTUAL

NORMAL NORMAL C111-SQUARE

Ol H K H K H K

1.0 2.0 27.57 37 26.78 38 26.90 37

2.0 3.0 46.27 il1 45.49 il1 45.54 110

3.0 4.0 64.79 221 64.00 220 63.90 219

4.0 5.0 83.24 368 82.45 366 82.32 365

5.0 6.0 101.67 552 100.88 549 100.77 548

6.0 7.0 120.08 773 119.29 769 119.23 768

7.0 8.0 138.48 1030 137.70 1026 137.57 1024

8.0 9.0 156.88 1324 156.09 1319 156.07 1318

9.0 10.0 175.27 1655 174.49 1649 174.35 1647

10.0 11.0 193.67 2022 192.88 2016 192.77 2014

0.025 = 0.01

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL C111-SQUARE

A0 11 K 1 K IK

1.0 3.0 8.972 14 8.574 15 8.483 14

2.0 4.0 11.786 37 13.391 38 13.450 37

3.0 5.0 18.483 70 18.088 70 18.114 69

4.0 6.0 23.137 1i1 22.743 ill 22.771 110

5.0 7.0 27.771 161 27.377 161 27.372 160

6.0 8.0 32.394 221 32.000 220 31.948 219

7.0 9.0 37.009 290 36.616 289 36.629 288

8.0 10.0 41.620 368 41.227 366 41.159 365

9.0 11.0 46.228 456 45.834 453 45.781 452

50.440 12. 50.383J10.050.440 549 50.383 548
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= 0.025 = 0.01

STANDARD SQUARE-ROOT ACTUAL

NORMAL NORMAL .uli-SQUARE

H K H K II K

1.0 4.0 4.860 9 4.595 10 4.795 9

2.0 5.0 7.067 21 6.803 22 6.900 21

3.0 6.0 9.191 37 8.927 38 8.967 37

4.0 7.0 11.283 58 11.019 58 11.172 58

5.0 8.0 13.358 82 13.095 82 13.176 82

6.0 9.0 15.425 11 15.162 i1 15.181 110

7.0 10.0 17.485 144 17.223 143 17.189 142

8.0 11.0 19.542 180 19.279 180 19.304 179

9.0 12.0 21.596 221 21.333 220 21.299 219

10.0 13.0 23.648 266 23.385 265 23.382 264

= 0.05 B = 0.01

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CII-SQUARE

A i K 11 K H If K

0.1 0.3 80.52 12 73.6 13 77.00 12

0.2 0.4 121.81 32 114.94 32 116.50 31

0.3 0.5 162.10 60 155.26 58 156.06 58

0.4 0.6 202.04 95 195.22 93 196.25 93
0.5 0.7 241.81 138 235.00 136 234.58 135

0.6 0.8 281.49 190 274.68 187 274.91 186

0.7 0.9 321.10 249 314.30 245 313.88 244

0.8 1.0 360.68 316 353.88 311 354.23 311

0.9 1.1 400.23 391 393.44 386 393.46 385

1.0 1.2 439.76 474 432.97 468 432.85 467

)2
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=0.05 6 =0.01

STANDARD SQUARE-ROOT ACTUAL

NORMAL NORMAL CIIl-SQUARE

0l H K H K H K

0.1 0.6 21.578 4 18.773 5 19.700 4

0.2 0.7 28.783 9 26.005 i0 27.250 9

0.3 0.8 35.575 16 32.812 16 33.500 15

0.4 0.9 42.195 23 39.442 23 39.556 22

0.5 1.0 48.724 32 45.977 32 46.600 31

0.6 1.1 55.197 42 52.455 41 53.250 41
0.7 1.2 61.633 53 58.895 52 59.256 52

0.8 1.3 68.045 66 65.310 65 65.246 64

0.9 1.4 74.438 80 71.706 78 72.032 78

1.0 1.5 80.817 95 78.087 93 78.499 93

= 0.05 0.01

STANDARD SQUARE-ROOr ACTUAL
NORMAL NORNAl. CIII-SQUARE

If K It K If K

1.0 2.0 24.36 32 22.99 32 23.30 31

2.0 3.0 40.41 95 39.04 93 39.25 93

3.0 4.0 56.30 190 54.94 187 54,98 186

4.0 5.0 72.14 316 70.78 311 70.85 311

5.0 b.O 87.95 474 86.59 468 86.57 467

6.0 7.0 103.76 663 102.40 656 102.38 65-

7.0 8.0 119.55 884 118.20 875 118.11 874

8.0 9.0 135.34 1136 133.99 1126 134.03 1126

9.0 10.0 151.13 1420 149.77 1409 149.96 1410

10.0 11.0 166.92 1736 165.56 1723 165.91 1726

~22
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0.05 = 0.01

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE

W0 Al H K H K H K

1.0 3.0 8.052 12 7.360 13 7.700 12

2.0 4.0 12.181 32 11.494 32 12.075 32

3.0 5.0 16.210 60 15.526 58 15.606 58

4.0 6.0 20.204 95 19.522 93 19.625 93

5.0 7.0 24.181 138 23.500 136 23.458 135

6.0 8.0 28.149 190 27.468 187 27.491 186

7.0 9.0 32.110 249 31.430 245 31.388 244

8.0 10.0 36.068 316 35.388 311 35.423 311

9.0 11.0 40.023 391 39.343 386 39.346 385

10.0 12.0 43.976 474 43.296 468 43.285 467

0.05 = 0.01

STANDARD SQUARE-ROOT AcIUAL

NORMAl, NORMAL CRIl-SQUARE

Al(I I t K 11 ~ K I! K

1.0 4.0 4.408 7 3.944 8 4.000 7

2.0 5.0 6.2Q9 18 5.839 18 5.860 17

3.0 6.0 8.121 32 7.663 32 7.767 31

4.0 7.0 9.915 50 9.459 49 9.536 48

5.0 8.0 11.696 71 11.241 69 11.174 68

6.0 9.0 13.470 95 13.015 93 13.083 93

7. 1 10.0 15.238 123 14.783 121 14.766 120

8.0 11.0 17.003 155 16.549 152 16.523 151

9. 1.0 1.76 9 1.32 187 18.327 186

10 0 13.0 20.527 228 20.073 225 20.077 224

23
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S0. 05 =0.025

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL C1II-SQUARE

XO X1. H K H K H K

0.1 .0.3 63.52 10 60.65 11 61.5 10

0.2 0.4 97.58 26 94.72 27 95.25 26

0.3 0.5 130.80 49 127.94 49 129.83 49

0.4 0.6 163.72 78 160.86 78 159.99 77

0.5 0.7 196.49 114 193.64 114 193.76 113

0.6 0.8 229.19 156 226.64 156 226.49 155

0.7 0.9 261.82 205 258.99 204 258.54 203

o .8 1.0 294.45 260 291.60 259 291.24 258

0.9 1.1 327.04 322 324.20 321 324.41 320

1.0 1.2 359.62 1390 356.77 389 356.99 13,38

=0.05 =0.025

STANDARD SQUJARE'- ROUT AC!' AL
NORML NORMA\L (']I-SQUARE

IIKIi K it K

0.1 0.6 16.626 3 15.469 4 14.583 3

0.2 0.7 22.580 8 21.429 8 20.571 7

0.3 0.8 28.186 13 '27.038 13 28.167 13

0.4 0.9 33.647 19 32.601 20 33.125 19

0.5 1.0 39.031 26 37.886 27 38.100 26

0.6 1.1 44.368 35 43.224 35 43.182 34

0.7 1.2 49.674 44 48.531 44 48.250 43

u.8 1.3 54.959 54 53.817 55 54.068 54

0.9 1.4 60.229 66 59.087 66 59.002 65

1.0 1.5 65.487 78 64.345 78 b3.995 77
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= 05 = 0.025

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CAiL-SQUARE

0 Al H K H K H K

1.0 2.0 19.515 26 18.94 27 19.05 26

2.0 3.0 32.743 78 32.17 78 32.00 77

3.0 4.0 45.820 156 45.27 156 45.30 155

4.0 5.0 58.890 260 58.32 259 58.25 258

5.0 6.0 71.923 390 71.35 389 71.40 388

6.0 7.0 84.946 546 84.38 544 84.34 543

7.0 8.0 97.960 728 97.40 725 97.31 724

8.0 9.0 110.980 936 110.41 933 110.40 932

9.0 10.0 123.990 1170 123.42 1166 123.36 1165

10.0 11.0 136.990 1430 136.43 1426 136.34 1424

= 0.05 6 = 0.025

STANDARD SQUARE- ROOT ACTUAL
NORMAL NOR1L0W. CIII-SQUARE

If K~ 1 K 11 K

1.0 3.0 6.352 10 6.063 11 6.150 10

2.0 4.0 9.758 26 9.471 27 9.525 26

3.0 5.0 13.080 49 12.794 49 12.679 48

4.0 6.0 16.372 78 16.086 78 15.999 77

5.0 7.0 19.649 114 19.364 114 19.376 113

6.0 8.0 22.919 156 22.634 ]56 22.650 155

7.0 9.0 26.184 205 25.899 204 25.854 203

8.0 10.0 29.445 260 29.160 259 29.124 258

9.0 11.0 32.704 322 32.419 321 32.441 320

i 10.0 12.0 35.962 390 35.677 389 35.699 388

25
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0.05 =0.025

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL Ci 1-SQUARE

Al H K it K H K

1.0 4.0 3.442 6 3.250 7 3.285 6

2.0 5.0 5.003 15 4.812 15 4.700 14

3.0 6.0 6.505 26 6.314 27 6.350 26

4.0 7.0 7.985 41 7.794 41 7.779 40

5.0 8.0 9.453 58 9.262 58 9.364 58

6.0 9.0 10.914 78 10.724 78 10.666 77

7.0 10.0 12.372 101 12.182 101 12.138 100

8.0 11.0 13.827 127 13.637 127 13,616 126

9.0 12.0 15.279 156 15.089 156 15.100 155

10.0 13.0 16.731 188 16.541 187 16.500 186

= 0.01 = 0.025

ST ANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE

'I H K H K II K

0.1 0.3 81.86 14 85.74 17 82.50 15

0.2 0.4 130.01 37 133.91 40 133.75 39

0.3 0.5 176.98 70 180.88 73 180.88 72

0.4 0.6 223.52 i1 227.43 115 227.97 114

0.5 0.7 269.86 161 273.77 165 274.31 165

0.6 0.8 316.08 221 319.99 226 320.26 225

0.7 0.9 362.24 290 366.16 295 365.96 294

0.8 1.0 408.35 368 412.27 373 411.55 372

0.9 1.1 454.43 456 458.35 461 457.98 460

1.0 1.2 500.48 552 504.41 558 504.L7 557
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c= 0.01 0.025

STANDARD SQUARE-ROOT ACTUAL

NORMAL NORMAL CllI-SQUARE

W xI H K H K H K

0.1 0.6 20.328 5 21.870 7 23.300 6

0.2 0.7 28.746 11 30.296 13 30.500 12

0.3 0.8 36.672 18 38.226 21 37.000 19

0.4 0.9 44.392 27 35.950 30 44.944 28

0.5 1.0 52.004 37 53.563 40 53.500 39

0.6 1.1 59.549 49 61.110 52 60.736 51

0.7 1.2 67.051 62 68.613 66 68.917 65

0.8 1.3 74.523 77 76.086 80 76.501 80

0.9 1.4 81.973 93 83.537 97 83.582 96

1.0 1.5 89.407 111 90.971 115 Q1.186 114

0.01 0.025

STANDARD SQUARE-ROOT ACTUAL
L NORMAL NORMAL CuT-SQUARE

. II K it K II K

1.0 2.0 26.00 37 26.78 40 26.75 39

2.0 3.0 4470 ill 4549 115 45.59 114

3.0 4.0 63.22 221 64.00 226 64.05 225

ki 4.0 5.0 81.67 368 82.45 373 82.31 372

5.0 6.0 100.10 552 100.88 558 100.83 557

6.0 7.0 11851 773 119.29 779 119.20 778

7.0 8.0 136.92 1030 137.70 1037 137.60 1036

8.0 9.0 155.31 1324 156.10 1332 156.03 1331

().0 10.0 173.70 1655 174.48 1664 174.36 1662

10.0 11.0 192.10 2022 192.88 2032 192.73 2030

27
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0.01 = 0.025

STANDARD SQUARE-ROOT ACTUAL

NORMAL NORMAL CHI-SQUARE

0 H K H K H K

1.0 3.0 8.186 14 8.574 17 8.250 15

2.0 4.0 13.001 37 13.3QI 40 13.375 39

3.0 5.0 17.697 70 18.088 73 18.088 72

4.0 6.0 22.353 i1 22.743 115 22.797 114

5.0 7.0 26.986 161 27.377 165 27.431 165

6.0 8.0 31.608 221 32.000 226 32.026 225

7.0 9.0 36.224 290 36.616 295 36.596 294

8.0 10.0 40.835 368 41.227 373 41.155 372

9.0 11.0 45.443 456 45.834 461 45.789 460

10.0 12.0 50.048 552 50.440 558 50.417 557

0.01 0.025

STANDARD SQUARE-ROOT ACTUAL

NORMAL NORMAL CHI-SQUARE

0 H K K i K

1.0 4.0 4.337 9 4.595 11 4.275 9

2.0 5.0 6.544 21 6.803 24 6.675 22

3.0 6.0 8.667 37 8.927 40 ,1.550 39

4.0 7.0 10.759 58 11.01 61 i(j.998 60

5.0 8.o 12.835 82 13.0q5 86 I1.i13 85

6.0 9.0 14.901 111 15.162 115 15.198 114

7.0 10.0 1- .)62 144 17.223 147 17.261 147

8.0 11.0 19.018 180 19.279 184 lq.311 184

9.0 12.0 21.072 221 21.333 226 21.351 225

10.0 13.0 23.124 266 23.385 271 23.3831 270
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